The correctness of the space-group choice was checked by using MISSYM (Le Page, 1987). The η refinements (Rogers, 1981) gave, with $w R=0.033$, $\eta=1.02$ (3) and confirm the proposed chirality. The largest peaks in the final $\Delta \rho$ map were $\pm 1.0(2) \mathrm{e} \AA^{-3}$. Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables X-ray Crystallography (1974, Vol. IV). The programs used were PARST (Nardelli, 1983), SHELXTL-Plus (Sheldrick, 1987), PCK83 (Williams, 1984), PLATON (Spek, 1982) and MISSYM (Le Page, 1987). The molecule and the numbering scheme are shown in Fig. 1. Positional parameters and the equivalent values of the anisotropic displacement parameters for the non-H atoms are given in Table 1.* Selected bond lengths and bond angles, torsion angles, least-squares

[^0]planes, dihedral angles and possible H bonds are given in Table 2.

Related literature. The crystal structure of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}(\mathrm{Br})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{Ph}^{\dagger} \mathrm{Bu}$ is described by Weichmann, Mügge, Grand \& Robert (1982) and literature on triorganotin halides with a pentacoordinated tin centre resulting from the intramolecular coordination of a donor function is given there.

References

Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Sheldrick, G. M. (1987). SHELXTL-Plus, release 3.4. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. For Nicolet $R 3 m / V$ crystallographic systems. Univ. of Göttingen, Germany.
SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Weichmann, H., Mügge, C., Grand, A. \& Robert, J. (1982). J. Organomet. Chem. 238, 343-356.
Williams, D. E. (1984). PCK83. A Crystal and Molecular Packing Analysis Program. Univ. of Louisville; QCPE Program No. 481, Dept. of Chemistry, Indiana Univ., Indiana, USA.

Structure of trans-Carbonylmethylbis(tri-p-tolylphosphine)iridium(I), trans- $\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{CH}_{3}\right)\left\{\mathbf{P}\left(p-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$

By Thomas S. Janik
Department of Chemistry, State University of New York at Fredonia, Fredonia, NY 14068, USA
and Melvyn Rowen Churchill, Ronald F. See, Sherri L. Randall, Jeffrey M. McFarland and Jim D. Atwood
Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA

(Received 1 November 1991; accepted 17 December 1991)

Abstract

Ir}(\mathrm{CO})\left(\mathrm{CH}_{3}\right)\left\{\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right\}_{2}\right], \quad \mathrm{C}_{44} \mathrm{H}_{45} \mathrm{IrOP} 2\), $M_{r}=843.9$, orthorhombic, Pna2 $1_{1}, a=21.654$ (3), b $=10.581$ (1), $c=16.820$ (1) $\AA, V=3853.8$ (6) \AA^{3}, Z $=4, \quad D_{x}=1.455 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \bar{\alpha})=0.71073 \AA$, $\mu(\mathrm{Mo} K \alpha)=35.62 \mathrm{~cm}^{-1}, F(000)=1696, T=295 \mathrm{~K}$, $R=5.73, w R=5.01 \%$ for 3527 unique data and $R=$ $3.08, w R=3.82 \%$ for 2291 data with $F_{o}>6.0 \sigma\left(F_{o}\right)$. The central $\operatorname{Ir}(\mathrm{I})$ atom has a square-planar coordination environment in which $\operatorname{Ir}-\mathrm{P}(1)=2.305$ (3), $\mathrm{Ir}-\mathrm{P}(2)=2.302(3), \quad \mathrm{Ir}-\mathrm{CH}_{3}=2.206(13) \quad$ and $\mathrm{Ir}-\mathrm{CO}=1.867$ (17) \AA.

0108-2701/92/081493-03\$06.00

Experimental. We have been involved in the structural characterization of a number of simple complexes of Ir^{1} (Churchill, Fettinger, Rappoli \& Atwood, 1987, and references therein). Among the complexes characterized was trans- $\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{CH}_{3}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Rees, Churchill, Li \& Atwood, 1985). This structure suffered from disorder with the methyl and carbonyl ligands scrambled on a statistical basis about the crystallographic inversion center. We now report the results of an X-ray diffraction study of the analogous compound trans- $\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{CH}_{3}\right)\{\mathrm{P}(p\right.$ -
(C) 1992 International Union of Crystallography

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$

Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}{ }^{*}$
$\mathrm{Ir}(1)$	9048 (1)	8693 (1)	10000	35 (1)
$P(1)$	9879 (1)	9796 (3)	9499 (3)	36 (1)
$P(2)$	8261 (1)	7587 (3)	10603 (3)	34 (1)
C(1)	8491 (7)	9841 (16)	9556 (10)	61 (5)
$\mathrm{O}(1)$	8153 (6)	10483 (15)	9252 (11)	119 (7)
C(2)	9691 (6)	7199 (13)	10387 (8)	45 (4)
C(11)	8018 (4)	6275 (10)	9929 (15)	36 (3)
C(12)	8170 (5)	5026 (11)	10106 (9)	35 (4)
C(13)	7984 (7)	4138 (14)	9567 (10)	58 (5)
C(14)	7685 (6)	4388 (16)	8895 (10)	58 (5)
C(15)	7523 (7)	5641 (16)	8757 (11)	63 (6)
C(16)	7701 (7)	6575 (12)	9261 (9)	53 (5)
C(17)	7495 (10)	3383 (16)	8296 (14)	98 (9)
C(21)	8395 (6)	6852 (12)	11588 (7)	35 (4)
C(22)	7981 (6)	5998 (13)	11901 (8)	48 (5)
C(23)	8064 (7)	5492 (13)	12641 (8)	51 (5)
C(24)	8571 (7)	5831 (15)	13097 (8)	50 (5)
C(25)	8991 (6)	6659 (14)	12781 (8)	53 (5)
C(26)	8906 (6)	7174 (12)	12040 (8)	43 (4)
C(27)	8655 (10)	5288 (22)	13945 (10)	89 (9)
C(31)	7535 (6)	8428 (12)	10777 (7)	36 (4)
C(32)	6962 (6)	7849 (13)	10745 (10)	56 (5)
C(33)	6420 (7)	8523 (16)	10871 (10)	59 (6)
C(34)	6450 (7)	9812 (17)	11037 (10)	47 (5)
C(35)	6996 (7)	10351 (16)	11109 (10)	61 (6)
C(36)	7543 (6)	9692 (13)	10974 (9)	48 (5)
C(37)	5842 (8)	10547 (19)	11099 (12)	80 (7)
C(41)	10314 (6)	9107 (12)	8666 (8)	42 (4)
C(42)	10231 (7)	7871 (13)	8451 (9)	55 (5)
C(43)	10540 (8)	7377 (15)	7808 (10)	70 (6)
C(44)	10940 (7)	8092 (15)	7341 (9)	59 (5)
C(45)	11030 (7)	9315 (15)	7565 (9)	55 (5)
C(46)	10721 (7)	9849 (17)	8205 (9)	55 (5)
C(47)	11256 (11)	7526 (20)	6642 (11)	92 (8)
C(51)	10457 (6)	10142 (12)	10284 (7)	36 (4)
C(52)	10228 (6)	10355 (15)	11036 (9)	51 (5)
C(53)	10602 (7)	10727 (15)	11640 (8)	54 (5)
C(54)	11218 (7)	10933 (12)	11541 (9)	47 (5)
C(55)	11438 (7)	10713 (13)	10757 (11)	57 (6)
C(56)	11076 (6)	10301 (14)	10128 (12)	60 (7)
C(57)	11611 (8)	11358 (16)	12217 (10)	74 (6)
C(61)	9708 (5)	11369 (12)	9127 (8)	39 (4)
C(62)	9417 (6)	11520 (14)	8390 (8)	49 (5)
C(63)	9248 (7)	12704 (14)	8103 (10)	57 (5)
C(64)	9357 (6)	13777 (14)	8572 (10)	52 (5)
C(65)	9619 (6)	13615 (13)	9276 (9)	50 (5)
C(66)	9790 (7)	12456 (13)	9578 (10)	52 (5)
C(67)	9148 (8)	15081 (15)	8267 (11)	71 (6)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Fig. 1. ORTEPII view of trans-[$\mathrm{Ir}(\mathrm{CO})\left(\mathrm{CH}_{3}^{\dot{*}}\right)\left\{\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{3}\right\}$].

$\operatorname{lr}(1)-P(1)$	2.305 (3)	$\operatorname{lr}(1)-\mathrm{P}(2)$	2.302 (3)
$\operatorname{lr}(1)-\mathrm{C}(1)$	1.867 (17)	$\operatorname{lr}(1)-\mathrm{C}(2)$	2.206 (13)
$\mathrm{P}(1)-\mathrm{C}(41)$	1.838 (14)	$\mathrm{P}(1)-\mathrm{C}(51)$	1.856 (13)
$P(1)-C(61)$	1.816 (13)	$P(2)-C(11)$	1.868 (18)
$\mathrm{P}(2)-\mathrm{C}(21)$	1.853 (13)	$\mathrm{P}(2)-\mathrm{C}(31)$	1.830 (13)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.122 (22)		
$P(1)-\operatorname{Ir}(1)-P(2)$	175.1 (1)	$P(1)-\operatorname{lr}(1)-\mathrm{C}(1)$	91.6 (5)
$P(2)-\operatorname{lr}(1)-\mathrm{C}(1)$	91.7 (5)	$P(1)-\operatorname{Ir}(1)-C(2)$	88.7 (3)
$\mathrm{P}(2)-\mathrm{Ir}(1)-\mathrm{C}(2)$	88.5 (3)	$C(1)-\operatorname{lr}(1)-\mathrm{C}(2)$	172.8 (6)
$\operatorname{lr}(1)-\mathrm{P}(1)-\mathrm{C}(41$.	118.5 (4)	$\operatorname{lr}(1)-P(1)-C(51)$	111.5 (4)
$\mathbf{C}(41)-P(1)-C(51)$	106.0 (6)	$\operatorname{lr}(1)-\mathrm{P}(1)-\mathrm{C}(61)$	115.5 (4)
$\mathrm{C}(41)-\mathrm{P}(1)-\mathrm{C}(61)$	101.8 (6)	$\mathrm{C}(51)-\mathrm{P}(1)-\mathrm{C}(61)$	101.6 (6)
$\operatorname{Ir}(1)-\mathrm{P}(2)-\mathrm{C}(11)$	108.6 (6)	$\operatorname{lr}(1)-\mathbf{P}(2)-\mathbf{C}(21)$	119.4 (4)
$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(21)$	106.0 (7)	$\operatorname{lr}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	117.3 (4)
$\mathrm{C}(11)-\mathrm{P}(2)-\mathrm{C}(31)$	102.5 (5)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(31)$	101.2 (6)
$\operatorname{Ir}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	175.9 (16)		

$\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{3}\right\}_{2}$], which has an ordered structure, thereby allowing the direct determination of both $\mathrm{Ir}-\mathrm{CH}_{3}$ and $\mathrm{Ir}-\mathrm{CO}$ bond lengths in this class of compound.

A colorless crystal of approximate orthogonal dimensions $0.20 \times 0.20 \times 0.25 \mathrm{~mm}$ was sealed into a thin-walled glass capillary and was mounted and accurately aligned on a Siemens $R 3 \mathrm{~m} / \mathrm{V}$ automated four-circle diffractometer. Determination of unit-cell parameters and the orientation matrix and data collection [Mo $K \alpha ; \quad 2 \theta=6.0-50.0^{\circ} ; \quad[(\sin \theta) / \lambda]_{\max }=$ $0.539 \AA^{-1}$] were performed using the Siemens $P 3$ program package. Data for the octants $h k \bar{l}$ and $h \bar{k} \bar{l}$ were collected ($h 0-25, k-12-12, l-20-0$). 7259 data were collected. These data were corrected for Lorentz and polarization factors and for the effects of absorption. The data were merged to produce 3527 independent reflections ($R_{\text {int }}=3.91 \%$). The systematic absences $0 k l$ for $k+l=2 n+1$ and $h 0 l$ for $h=2 n+1$ are consistent with the non-centrosymmetric space group $P n a 2_{1}$ or the centrosymmetric space group Pnam. Intensity statistics favored the noncentrosymmetric space group; this was confirmed by successful solution and refinement of the structure in space group Pna2 ${ }_{1}$.

All crystallographic calculations were carried out on a VAX3100 workstation using the SHELXTLPlus program package (Siemens, 1990). The analytical scattering factors for neutral atoms were corrected for both the f^{\prime} and the $f^{\prime \prime}$ components of anomalous dispersion. The Ir atom was located by direct methods; all other non-H atoms were located from difference-Fourier maps. H atoms of the p-tolyl and the methyl ligands were located from these maps and were placed in idealized positions with $d(\mathrm{C}-\mathrm{H})$ $=0.96 \AA$ (Churchill, 1973). Shifts in their positions were fixed to be equal to those of their attached C atoms; their isotropic thermal parameters were refined, but only one such parameter was used for all three H atoms on a given methyl group. All non-H atoms were refined with anisotropic thermal parameters, leading to convergence $\left[(\Delta / \sigma)_{\max }=0.001\right]$ with
$R=5.73, w R=5.01 \%$ and GOF $=0.81$ for all 3527 reflections $[R=3.08, w R=3.82 \%$ for those 2291 data for which $\left.F_{o}>6.0 \sigma(F)\right]$. The function minimized during least-squares refinement was $\sum w\left(\left|F_{o}\right|\right.$ $\left.-\left|F_{c}\right|\right)^{2}$ where $w=1 /\left[\sigma^{2}(F)+0.0012 F^{2}\right]$. A final difference Fourier map showed no unusual features, having a residual electron density in the range -0.59 to $+0.97 \mathrm{e} \AA^{-3}$ close to the position of the lr atom and no other features above $0.50 \mathrm{e}^{\AA^{-3}}$. The absolute configuration was determined by η refinement [$\eta=+1.07(6)$ for the initially chosen coordinates]. Final atom coordinates appear in Table 1.* The molecular structure and atomic labeling scheme are shown in Fig. 1; this is an ORTEP plot (Johnson, 1976). Selected bond lengths and bond angles are collected in Table 2. The structure is ordered and there are no abnormally short intermolecular distances.

Related literature. In the following discussion corresponding values of bond lengths and angles from the related structural determination of disordered trans$\left[\mathrm{CH}_{3}(\mathrm{CO}) \mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Rees, Churchill, Li \& Atwood, 1985) are listed in curly brackets for ease of comparison. It should be noted that in the earlier determination the $\mathrm{Ir}-\mathrm{CO}$ and $\mathrm{Ir}-\mathrm{CH}_{3}$ distances were estimated and that the molecule lay at a crystallographic inversion center and so was rigorously

[^1]square planar. The central $\operatorname{Ir}(\mathrm{I})$ atom in the present complex is in a square-planar environment with trans tri-p-tolyphosphine ligands $[\mathrm{Ir}-\mathrm{P}(1)=2.305$ (3), $\mathrm{Ir}-\mathrm{P}(2)=2.302(3) \AA\{2.300(1) \AA\}, \mathrm{P}(1)-\mathrm{Ir}-\mathrm{P}(2)$ $\left.=175.1(1)^{\circ}\left\{180^{\circ}\right\}\right]$. The $\mathrm{Ir}-\mathrm{CO}$ bond length is $1.867(17) \AA \quad\{1.835 \AA\} \quad$ with $\quad \mathrm{C}(1)-\mathrm{O}(1)=$ 1.122 (22) $\AA\{1.14 \AA$, assumed $\}$. The $\mathrm{Ir}-\mathrm{CH}_{3}$ distance is 2.206 (13) $\AA\{2.17 \AA\}$ and is trans to the carbonyl ligand with $\mathrm{C}(1)-\mathrm{Ir}-\mathrm{C}(2)=172.8(6)^{\circ}$ $\left\{180^{\circ}\right\}$.

Distances and angles within the p-tolyl ligands are normal, with $\mathrm{P}-\mathrm{C}$ bond lengths ranging from 1.816 (13) through 1.868 (18) $\AA\{1.825(3)-$ 1.834 (3) $\AA\}$, averaging $1.844 \pm 0.019 \AA\{1.830 \pm$ $0.005 \AA\}$. The present complex is isomorphous with trans-carbonylchlorobis(tri- p-tolylphosphine)iridium(I) (Churchill, Fettinger, Rappoli \& Atwood, 1987).

TSJ thanks the Research Corporation (Award D-152) and the National Science Foundation for a Research Opportunity Award (Grant No. CHE9015897). Purchase of a Siemens $R 3 m / V$ diffractometer was made possible by a grant from the Chemical Instrumentation Program of the National Science Foundation (Grant No. 89-13733).

References

Churchill, M. R. (1973). Inorg. Chem. 12, 1213-1214.
Churchill, M. R., Fettinger, J. C., Rappoli, B. J. \& Atwood, J. D. (1987). Acta Cryst. C43, 1697-1699.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rees, W. M., Churchill, M. R., Li, Y.-J. \& Atwood, J. D. (1985). Organometallics, 4, 1162-1167.

Siemens (1990). SHELXTL-Plus manual. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Structure of 1,1-Dioxo-2,4,4,6-tetraphenyl-4H-thiopyran Benzene Solvate

By Jaroslav Vostěchovský and Jinděich Hašek
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 16206 Praha 6, Czechoslovakia

(Received 26 June 1991; accepted 26 November 1991)

Abstract

C}_{29} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S} .{ }_{2} \mathrm{C}_{6} \mathrm{H}_{6}, \quad M_{r}=473.61\), monoclinic, $\quad P 2_{1} / c, \quad a=9.029$ (4),$\quad b=13.265$ (4), $\quad c=$ 21.426 (11) $\AA, \beta=92.62$ (4) ${ }^{\circ}, V=2564$ (2) $\AA^{3}, Z=$ 4, $D_{x}=1.227 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54184 \AA, \mu=$ $12.95 \mathrm{~cm}^{-1}, F(000)=996, T=294 \mathrm{~K}, R=0.052$ for 3161 unique observed reflections. The central ring

adopts a boat conformation with S 1 and C 4 displaced by 0.108 (6) and 0.041 (6) \AA, respectively, out of the least-squares plane through the remaining ring atoms. The phenyl rings at C2 and C6 make dihedral angles of 58.2 (2) and $-44.7(3)^{\circ}$, respectively, with this least-squares plane. The orientations of the

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, complete bond distances and bond angles and a stereoscopic view of the unit cell have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54956 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL0519]

[^1]: * Lists of anisotropic thermal parameters, H-atom positions, structure factors, $\mathrm{C}-\mathrm{C}$ distances and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles within the p-tolyl ligands have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54965 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR0014]

